当前位置:首页银河百科 │ 模拟信号

模拟信号

  • 浏览次数:12484次
  • 发布时间:2013/9/18 12:31:48
  • 作者:银河电气

一、概述

  模拟信号分布于自然界的各个角落,如每天温度的变化,而数字信号是人为的抽象出来的在幅度取值上不连续的信号。电学上的模拟信号主要是指幅度和相位都连续的电信号,此信号可以被模拟电路进行各种运算,如放大,相加,相乘等。模拟信号是指用连续变化的物理量表示的信息,其信号的幅度,或频率,或相位随时间作连续变化,如目前广播的声音信号,或图像信号等。

  与数字信号的区别和联系

1.模拟信号与数字信号

  不同的数据必须转换为相应的信号才能进行传输:模拟数据(模拟量)一般采用模拟信号(Analog Signal),例如用一系列连续变化的电磁波(如无线电与电视广播中的电磁波),或电压信号(如电话传输中的音频电压信号)来表示;数字数据(数字量)则采用数字信号(Digital Signal),例如用一系列断续变化的电压脉冲(如我们可用恒定的正电压表示二进制数1,用恒定的负电压表示二进制数0),或光脉冲来表示。 当模拟信号采用连续变化的电磁波来表示时,电磁波本身既是信号载体,同时作为传输介质;而当模拟信号采用连续变化的信号电压来表示时,它一般通过传统的模拟信号传输线路(例如电话网、有线电视网)来传输。 当数字信号采用断续变化的电压或光脉冲来表示时,一般则需要用双绞线、电缆或光纤介质将通信双方连接起来,才能将信号从一个节点传到另一个节点。

2.模拟信号与数字信号之间的相互转换

  模拟信号和数字信号之间可以相互转换:模拟信号一般通过PCM脉码调制(Pulse Code Modulation)方法量化为数字信号,即让模拟信号的不同幅度分别对应不同的二进制值,例如采用8位编码可将模拟信号量化为2^8=256个量级,实用中常采取24位或30位编码;数字信号一般通过对载波进行移相(Phase Shift)的方法转换为模拟信号。计算机、计算机局域网与城域网中均使用二进制数字信号,目前在计算机广域网中实际传送的则既有二进制数字信号,也有由数字信号转换而得的模拟信号。但是更具应用发展前景的是数字信号。

二、信号采集

1.模拟通道选通

  单片机测控系统有时需要进行多路和多参数的采集和控制,如果每一路都单独采用各自的输入回路,即每一路都采用放大、滤波、采样/保持,A/D等环节,不仅成本比单路成倍增加,而且会导致系统体积庞大,且由于模拟器件、阻容元件参数特性不一致,对系统的校准带来很大困难;并且对于多路巡检如128路信号采集情况,每路单独采用一个回路几乎是不可能的。因此,除特殊情况下采用多路独立的放大、A/D外,通常采用公共的采样/保持及A/D转换电路(有时甚至可将某些放大电路共用),利用多路模拟开关,可以方便实现共用。

2.信号滤波

  从传感器或其它接收设备获得的电信号,由于传输过程中的各种噪声干扰,工作现场的电磁干扰,前段电路本身的影响,往往会有多种频率成分的噪声信号,严重情况下,这种噪声信号甚至会淹没有效输入信号,致使测试无法正常进行。为了减少噪声信号对测控过程的影响,需采取滤波措施,滤除干扰噪声,提高系统的信噪比(S/N)。

  过去常用模拟滤波电路实现滤波,模拟滤波的技术较为成熟。模拟滤波可分为有源滤波和无源滤波。设计有源滤波器,首先根据所要求的幅频特性,寻找可实现的有理函数进行逼近设计。常用的逼近函数有:波待瓦兹(Butterworth)函数、切比雪夫(Chebyshev)函数,贝塞尔(Besel)函数等,然后计算电路参数,完成设计。

  但是模拟滤波电路复杂,不仅增加了设计成本,而且还增加系统的功耗,降低了系统可靠性。随着电子技术的发展,现在很多的场合都应用数字滤波技术。数字滤波技术发展非常迅速,现在的手机、PDA等智能设备,大多采用数字滤波技术。它作为软件无线电的一个处理单元,有非常广阔的发展前景。但是,单片机的处理能力有限,只能完成比较简单的数字滤波。

在单片机系统中,首先在设计硬件是对信号采取抗干扰措施,然后在设计软件时,对采集到的数据进行消除干扰的处理,以进一步消除附加在数据中的各式各样的干扰,使采集到的数据能够真实的反映现场的情况。下面介绍的几种工控中常用的数字滤波技术。

3.电流电压的转换

  电压信号可以经由A/D转换器件转换成数字信号然后采集,但是电流不能直接由A/D 转换器转换。在应用中,先将电流转变成电压信号,然后进行转换。电流/电压转换在工业控制中应用非常广泛。

  电流/电压转换最简单的方法是在被测电路中串入精密电阻,通过直接采集电阻两端的电压来获得电流。A/D器件只能转换一定范围的电压信号,所以在电流/电压转换过程中,需要选择合适阻值的精密电阻。如果电流的动态范围较多,还必须在后端加入放大器进行二次处理。经过多次处理,会损失测量的精度。

  现在有很多电流/电压转换芯片,其响应时间、线性度、漂移等指标均很理想,且能适应大范围大电流的测量。

4.电压频率的转换

  频率接口有以下特点:

(1)接口简单、占用硬件资源少。频率信号通过任一根I/O口线或作为中断源及计数时钟输入系统。

(2)抗干扰性能好。V/F转换本身是一个积分过程,且用V/F转换器实现A/D转换,就是频率计数过程,相当于在计数时间内对频率信号进行积分,因而有较强的抗干扰能力。另外可采用光电耦合连接V/F转换器与单片机之间的通道,实现隔离。

(3)便于远距离传输。可通过调制进行无线传输或光传输。

由于以上这些特点,V/F转换器适用于一些非快速而需进行远距离信号传输的A/D转换过程。利用V/F变换,还可以减化电路、降低成本、提高性价比。

5.A/D转换

  A/D转换是指将模拟输入信号转换成N位二进制数字输出信号的过程。伴随半导体技术、数字信号处理技术及通信技术的飞速发展,A/D转换器近年也呈现高速发展的趋势。人类数字化的浪潮推动了A/D转换器不断变革,现在,在通信产品、消费类产品、工业医疗仪器乃至军工产品中无一不显现A/D转换器的身影,可以说,A/D转换器已经成为人类实现数字化的先锋。自1973年第一只集成A/D转换器问世至今,A/D、D/A转换器在加工工艺、精度、采样速率上都有长足发展,现在的A/D转换器的精度可达26位,采样速度可达1GSPS,今后的A/D转换器将向超高速、超高精度、集成化、单片化发展。不管怎么发展,A/D转换的原理和作用都是不变的。在下一节,将着重讨论A/D转换技术。

三、模拟信号的优缺点

  优点

  模拟信号的主要优点是其精确的分辨率,在理想情况下,它具有无穷大的分辨率。与数字信号相比,模拟信号的信息密度更高。由于不存在量化误差,它可以对自然界物理量的真实值进行尽可能逼近的描述。

模拟信号的另一个优点是,当达到相同的效果,模拟信号处理比数字信号处理更简单。模拟信号的处理可以直接通过模拟电路组件(例如运算放大器等)实现,而数字信号处理往往涉及复杂的算法,甚至需要专门的数字信号处理器。

  缺点

  模拟信号的主要缺点是它总是受到杂讯(信号中不希望得到的随机变化值)的影响。信号被多次复制,或进行长距离传输之后,这些随机噪声的影响可能会变得十分显著。在电学里,使用接地屏蔽(shield)、线路良好接触、使用同轴电缆或双绞线,可以在一定程度上缓解这些负面效应。

噪声效应会使信号产生有损。有损后的模拟信号几乎不可能再次被还原,因为对所需信号的放大会同时对噪声信号进行放大。如果噪声频率与所需信号的频率差距较大,可以通过引入电子滤波器,过滤掉特定频率的噪声,但是这一方案只能尽可能地降低噪声的影响。因此,在噪声在作用下,虽然模拟信号理论上具有无穷分辨率,但并不一定比数字信号更加精确。

尽管数字信号处理算法相对复杂,但是现有的数字信号处理器可以快速地完成这一任务。另外,计算机等系统的逐渐普及,使得数字信号的传播、处理都变得更加方便。诸如照相机等设备都逐渐实现数字化,尽管它们最初必须以模拟信号的形式接收真实物理量的信息,最后都会通过模拟数字转换器转换为数字信号,以方便计算机进行处理,或通过互联网进行传输。


上一篇:滑动平均

下一篇:三次谐波

Copyright 2010-2017 www.vfe.ac.cn, All Rights Reserved 湖南银河电气有限公司 版权所有 湘ICP备09002592号-5